데이터스케일링과 범주특성의 변환
데이터스케일링과 범주특성의 변환
데이터 스케일링
-
스케일링이란 연속형 특성의 단위가 다를 경우 이로 인해 과대 혹은 과소한 파라미터가 추정될 수 있기 때문에 모든 자료에 대해서 동일한 기준으로 자료를 변환하는 것을 의미한다.
-
머신러닝/딥러닝 전에 특성변수의 스케일링 과정은 매우 중요하다
- Min-Max Scaling
- 가장 대표적인 머신러닝/딥러닝의 스케일링 방법
- 각 특성변수의 값과 최소값의 차이를 (최대-최소)로 나눔
- 이 경우 모든 값은 0 이상의 양(+)의 값을 가짐
- 이상치에 영향이 있음
- standardization
- 평균이 0, 표준편차가 1이 되는 통계적인 자료 표준화의 대표적 값
- 표준화를 하는 이유는?
머신러닝에서 사용하는 Support Vector Machine, Linear Regression, Logistic Regression 모델은 데이터가 가우시안 분포를 가지고 있다고 가정하여 구현되어 있어서 사전에 학습 데이터에 관해 표준화를 적용하는 것이 모델의 예측 성능 향상에 중요하다.
범주특성의 원핫인코딩 변환
-
머신러닝에서는 one-hot-encoding을 해줘야 함
-
더미변수로 만들어 준다. (0,1 로 구성)
범주형 컬럼은 원핫인코딩으로 0,1으로 구성되게 변환해줌
연속형 컬럼은 Min-Max Scaling 또는 standardization으로 변환해줌
- Min-Max Scaling ,standardization 둘다 해봐서 둘 중에 더 정확한 것을 선택해야 한다
실습
1. 데이터 불러오기 & 범주/연속/레이블 분류
1
data<-read.csv("data/vote.csv", header=T)
1
head(data)
gender | region | edu | income | age | score_gov | score_progress | score_intention | vote | parties |
---|---|---|---|---|---|---|---|---|---|
1 | 4 | 3 | 3 | 3 | 2 | 2 | 4.0 | 1 | 2 |
1 | 5 | 2 | 3 | 3 | 2 | 4 | 3.0 | 0 | 3 |
1 | 3 | 1 | 2 | 4 | 1 | 3 | 2.8 | 1 | 4 |
2 | 1 | 2 | 1 | 3 | 5 | 4 | 2.6 | 1 | 1 |
1 | 1 | 1 | 2 | 4 | 4 | 3 | 2.4 | 1 | 1 |
1 | 1 | 1 | 2 | 4 | 1 | 4 | 3.8 | 1 | 2 |
1
data
gender | region | edu | income | age | score_gov | score_progress | score_intention | vote | parties |
---|---|---|---|---|---|---|---|---|---|
1 | 4 | 3 | 3 | 3 | 2 | 2 | 4.0 | 1 | 2 |
1 | 5 | 2 | 3 | 3 | 2 | 4 | 3.0 | 0 | 3 |
1 | 3 | 1 | 2 | 4 | 1 | 3 | 2.8 | 1 | 4 |
2 | 1 | 2 | 1 | 3 | 5 | 4 | 2.6 | 1 | 1 |
1 | 1 | 1 | 2 | 4 | 4 | 3 | 2.4 | 1 | 1 |
1 | 1 | 1 | 2 | 4 | 1 | 4 | 3.8 | 1 | 2 |
1 | 1 | 1 | 2 | 4 | 4 | 4 | 2.0 | 1 | 1 |
1 | 5 | 2 | 4 | 4 | 3 | 4 | 3.6 | 1 | 3 |
1 | 2 | 1 | 2 | 4 | 2 | 2 | 2.0 | 0 | 2 |
1 | 1 | 1 | 2 | 3 | 4 | 2 | 3.0 | 1 | 1 |
1 | 1 | 1 | 2 | 3 | 2 | 4 | 2.2 | 0 | 2 |
2 | 4 | 1 | 1 | 3 | 3 | 2 | 2.6 | 1 | 1 |
1 | 5 | 1 | 2 | 4 | 3 | 2 | 3.0 | 1 | 1 |
1 | 2 | 2 | 4 | 4 | 3 | 3 | 2.4 | 1 | 3 |
1 | 4 | 3 | 4 | 3 | 3 | 4 | 3.6 | 1 | 3 |
1 | 1 | 2 | 3 | 3 | 3 | 3 | 3.2 | 1 | 4 |
1 | 5 | 2 | 4 | 3 | 4 | 3 | 4.0 | 1 | 4 |
2 | 1 | 2 | 2 | 3 | 5 | 4 | 2.6 | 1 | 1 |
2 | 3 | 1 | 2 | 2 | 3 | 2 | 3.0 | 0 | 4 |
2 | 5 | 3 | 4 | 3 | 3 | 3 | 3.0 | 1 | 1 |
1 | 1 | 1 | 1 | 2 | 3 | 3 | 2.0 | 0 | 2 |
2 | 1 | 3 | 2 | 2 | 3 | 4 | 2.2 | 1 | 4 |
2 | 4 | 2 | 2 | 2 | 3 | 3 | 1.4 | 1 | 4 |
1 | 1 | 1 | 3 | 3 | 3 | 4 | 1.6 | 1 | 4 |
1 | 4 | 2 | 3 | 3 | 3 | 2 | 3.6 | 1 | 2 |
1 | 1 | 2 | 2 | 2 | 3 | 2 | 3.2 | 1 | 4 |
2 | 1 | 2 | 3 | 2 | 3 | 4 | 2.8 | 1 | 1 |
2 | 1 | 2 | 4 | 3 | 4 | 4 | 3.0 | 1 | 1 |
1 | 1 | 1 | 3 | 3 | 1 | 2 | 3.0 | 1 | 2 |
2 | 1 | 2 | 4 | 4 | 3 | 3 | 2.2 | 1 | 3 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1 | 1 | 2 | 1 | 2 | 3 | 5 | 2.2 | 1 | 1 |
1 | 2 | 2 | 1 | 2 | 4 | 3 | 3.4 | 1 | 4 |
2 | 1 | 1 | 1 | 1 | 4 | 2 | 3.4 | 1 | 4 |
1 | 4 | 1 | 1 | 2 | 1 | 4 | 2.8 | 1 | 4 |
2 | 1 | 1 | 1 | 1 | 3 | 4 | 2.8 | 1 | 2 |
2 | 1 | 1 | 1 | 2 | 2 | 4 | 3.0 | 0 | 4 |
1 | 5 | 2 | 2 | 3 | 4 | 3 | 3.4 | 0 | 1 |
1 | 1 | 2 | 1 | 1 | 3 | 3 | 2.8 | 1 | 4 |
1 | 1 | 1 | 1 | 2 | 3 | 3 | 3.0 | 1 | 4 |
1 | 5 | 1 | 1 | 1 | 2 | 2 | 2.6 | 0 | 2 |
2 | 1 | 2 | 1 | 3 | 4 | 4 | 4.4 | 1 | 4 |
2 | 2 | 1 | 1 | 1 | 3 | 4 | 2.8 | 0 | 4 |
1 | 5 | 1 | 1 | 2 | 3 | 4 | 3.4 | 1 | 4 |
1 | 2 | 2 | 1 | 2 | 2 | 1 | 2.2 | 1 | 2 |
1 | 5 | 1 | 1 | 1 | 3 | 3 | 3.0 | 0 | 4 |
2 | 1 | 2 | 2 | 3 | 2 | 4 | 3.0 | 1 | 4 |
2 | 1 | 1 | 1 | 3 | 2 | 3 | 3.0 | 1 | 4 |
1 | 1 | 2 | 1 | 2 | 4 | 4 | 5.0 | 1 | 1 |
1 | 1 | 1 | 1 | 2 | 3 | 2 | 2.2 | 1 | 4 |
2 | 1 | 2 | 1 | 2 | 4 | 3 | 3.0 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 4 | 4 | 3.6 | 0 | 1 |
1 | 1 | 2 | 1 | 2 | 3 | 3 | 3.4 | 1 | 1 |
2 | 1 | 2 | 2 | 2 | 3 | 3 | 3.6 | 1 | 4 |
2 | 1 | 1 | 1 | 1 | 5 | 4 | 3.2 | 0 | 1 |
2 | 1 | 1 | 3 | 4 | 3 | 2 | 1.0 | 1 | 2 |
1 | 4 | 1 | 4 | 4 | 3 | 3 | 1.8 | 1 | 2 |
1 | 1 | 2 | 1 | 2 | 3 | 4 | 2.6 | 1 | 4 |
1 | 2 | 2 | 1 | 2 | 3 | 3 | 2.6 | 1 | 2 |
1 | 1 | 2 | 3 | 4 | 3 | 2 | 4.0 | 1 | 4 |
2 | 1 | 2 | 2 | 2 | 3 | 3 | 3.8 | 1 | 2 |
범주형 자료 따로 분리해주기
1
data_cat <-subset(data, select=c(gender, region))
1
data_cat
gender | region |
---|---|
1 | 4 |
1 | 5 |
1 | 3 |
2 | 1 |
1 | 1 |
1 | 1 |
1 | 1 |
1 | 5 |
1 | 2 |
1 | 1 |
1 | 1 |
2 | 4 |
1 | 5 |
1 | 2 |
1 | 4 |
1 | 1 |
1 | 5 |
2 | 1 |
2 | 3 |
2 | 5 |
1 | 1 |
2 | 1 |
2 | 4 |
1 | 1 |
1 | 4 |
1 | 1 |
2 | 1 |
2 | 1 |
1 | 1 |
2 | 1 |
... | ... |
1 | 1 |
1 | 2 |
2 | 1 |
1 | 4 |
2 | 1 |
2 | 1 |
1 | 5 |
1 | 1 |
1 | 1 |
1 | 5 |
2 | 1 |
2 | 2 |
1 | 5 |
1 | 2 |
1 | 5 |
2 | 1 |
2 | 1 |
1 | 1 |
1 | 1 |
2 | 1 |
2 | 1 |
1 | 1 |
2 | 1 |
2 | 1 |
2 | 1 |
1 | 4 |
1 | 1 |
1 | 2 |
1 | 1 |
2 | 1 |
연속형 자료 따로 분리해주기
1
data_num <-subset(data, select = c(edu, income, age, score_gov, score_progress, score_intention))
1
data_num
edu | income | age | score_gov | score_progress | score_intention |
---|---|---|---|---|---|
3 | 3 | 3 | 2 | 2 | 4.0 |
2 | 3 | 3 | 2 | 4 | 3.0 |
1 | 2 | 4 | 1 | 3 | 2.8 |
2 | 1 | 3 | 5 | 4 | 2.6 |
1 | 2 | 4 | 4 | 3 | 2.4 |
1 | 2 | 4 | 1 | 4 | 3.8 |
1 | 2 | 4 | 4 | 4 | 2.0 |
2 | 4 | 4 | 3 | 4 | 3.6 |
1 | 2 | 4 | 2 | 2 | 2.0 |
1 | 2 | 3 | 4 | 2 | 3.0 |
1 | 2 | 3 | 2 | 4 | 2.2 |
1 | 1 | 3 | 3 | 2 | 2.6 |
1 | 2 | 4 | 3 | 2 | 3.0 |
2 | 4 | 4 | 3 | 3 | 2.4 |
3 | 4 | 3 | 3 | 4 | 3.6 |
2 | 3 | 3 | 3 | 3 | 3.2 |
2 | 4 | 3 | 4 | 3 | 4.0 |
2 | 2 | 3 | 5 | 4 | 2.6 |
1 | 2 | 2 | 3 | 2 | 3.0 |
3 | 4 | 3 | 3 | 3 | 3.0 |
1 | 1 | 2 | 3 | 3 | 2.0 |
3 | 2 | 2 | 3 | 4 | 2.2 |
2 | 2 | 2 | 3 | 3 | 1.4 |
1 | 3 | 3 | 3 | 4 | 1.6 |
2 | 3 | 3 | 3 | 2 | 3.6 |
2 | 2 | 2 | 3 | 2 | 3.2 |
2 | 3 | 2 | 3 | 4 | 2.8 |
2 | 4 | 3 | 4 | 4 | 3.0 |
1 | 3 | 3 | 1 | 2 | 3.0 |
2 | 4 | 4 | 3 | 3 | 2.2 |
... | ... | ... | ... | ... | ... |
2 | 1 | 2 | 3 | 5 | 2.2 |
2 | 1 | 2 | 4 | 3 | 3.4 |
1 | 1 | 1 | 4 | 2 | 3.4 |
1 | 1 | 2 | 1 | 4 | 2.8 |
1 | 1 | 1 | 3 | 4 | 2.8 |
1 | 1 | 2 | 2 | 4 | 3.0 |
2 | 2 | 3 | 4 | 3 | 3.4 |
2 | 1 | 1 | 3 | 3 | 2.8 |
1 | 1 | 2 | 3 | 3 | 3.0 |
1 | 1 | 1 | 2 | 2 | 2.6 |
2 | 1 | 3 | 4 | 4 | 4.4 |
1 | 1 | 1 | 3 | 4 | 2.8 |
1 | 1 | 2 | 3 | 4 | 3.4 |
2 | 1 | 2 | 2 | 1 | 2.2 |
1 | 1 | 1 | 3 | 3 | 3.0 |
2 | 2 | 3 | 2 | 4 | 3.0 |
1 | 1 | 3 | 2 | 3 | 3.0 |
2 | 1 | 2 | 4 | 4 | 5.0 |
1 | 1 | 2 | 3 | 2 | 2.2 |
2 | 1 | 2 | 4 | 3 | 3.0 |
2 | 1 | 2 | 4 | 4 | 3.6 |
2 | 1 | 2 | 3 | 3 | 3.4 |
2 | 2 | 2 | 3 | 3 | 3.6 |
1 | 1 | 1 | 5 | 4 | 3.2 |
1 | 3 | 4 | 3 | 2 | 1.0 |
1 | 4 | 4 | 3 | 3 | 1.8 |
2 | 1 | 2 | 3 | 4 | 2.6 |
2 | 1 | 2 | 3 | 3 | 2.6 |
2 | 3 | 4 | 3 | 2 | 4.0 |
2 | 2 | 2 | 3 | 3 | 3.8 |
레이블 데이터 분리해주기
1
data_class<-subset(data, select=c(vote, parties))
1
data_class
vote | parties |
---|---|
1 | 2 |
0 | 3 |
1 | 4 |
1 | 1 |
1 | 1 |
1 | 2 |
1 | 1 |
1 | 3 |
0 | 2 |
1 | 1 |
0 | 2 |
1 | 1 |
1 | 1 |
1 | 3 |
1 | 3 |
1 | 4 |
1 | 4 |
1 | 1 |
0 | 4 |
1 | 1 |
0 | 2 |
1 | 4 |
1 | 4 |
1 | 4 |
1 | 2 |
1 | 4 |
1 | 1 |
1 | 1 |
1 | 2 |
1 | 3 |
... | ... |
1 | 1 |
1 | 4 |
1 | 4 |
1 | 4 |
1 | 2 |
0 | 4 |
0 | 1 |
1 | 4 |
1 | 4 |
0 | 2 |
1 | 4 |
0 | 4 |
1 | 4 |
1 | 2 |
0 | 4 |
1 | 4 |
1 | 4 |
1 | 1 |
1 | 4 |
1 | 1 |
0 | 1 |
1 | 1 |
1 | 4 |
0 | 1 |
1 | 2 |
1 | 2 |
1 | 4 |
1 | 2 |
1 | 4 |
1 | 2 |
2. 범주형 특성의 웟핫인코딩(one-hot-encoding)
1
2
data_cat$gender<-factor(data_cat$gender, labels=c("male", "female"))
str(data_cat)
1
2
3
'data.frame': 211 obs. of 2 variables:
$ gender: Factor w/ 2 levels "male","female": 1 1 1 2 1 1 1 1 1 1 ...
$ region: int 4 5 3 1 1 1 1 5 2 1 ...
1
2
data_cat$region<-factor(data_cat$region, labels=c('Sudo', 'Chungcheung', 'Honam', 'Youngnam', 'Others'))
str(data_cat)
1
2
3
'data.frame': 211 obs. of 2 variables:
$ gender: Factor w/ 2 levels "male","female": 1 1 1 2 1 1 1 1 1 1 ...
$ region: Factor w/ 5 levels "Sudo","Chungcheung",..: 4 5 3 1 1 1 1 5 2 1 ...
1
data_cat
gender | region |
---|---|
male | Youngnam |
male | Others |
male | Honam |
female | Sudo |
male | Sudo |
male | Sudo |
male | Sudo |
male | Others |
male | Chungcheung |
male | Sudo |
male | Sudo |
female | Youngnam |
male | Others |
male | Chungcheung |
male | Youngnam |
male | Sudo |
male | Others |
female | Sudo |
female | Honam |
female | Others |
male | Sudo |
female | Sudo |
female | Youngnam |
male | Sudo |
male | Youngnam |
male | Sudo |
female | Sudo |
female | Sudo |
male | Sudo |
female | Sudo |
... | ... |
male | Sudo |
male | Chungcheung |
female | Sudo |
male | Youngnam |
female | Sudo |
female | Sudo |
male | Others |
male | Sudo |
male | Sudo |
male | Others |
female | Sudo |
female | Chungcheung |
male | Others |
male | Chungcheung |
male | Others |
female | Sudo |
female | Sudo |
male | Sudo |
male | Sudo |
female | Sudo |
female | Sudo |
male | Sudo |
female | Sudo |
female | Sudo |
female | Sudo |
male | Youngnam |
male | Sudo |
male | Chungcheung |
male | Sudo |
female | Sudo |
1
2
3
4
5
install.packages("caret")
library(caret)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
There is a binary version available but the source version is later:
binary source needs_compilation
caret 6.0-86 6.0-90 TRUE
Binaries will be installed
package 'caret' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\MyCom\AppData\Local\Temp\RtmpEDGEx8\downloaded_packages
Warning message:
"package 'caret' was built under R version 3.6.3"Loading required package: lattice
Loading required package: ggplot2
1
2
one_hot <- dummyVars(" ~ .", data = data_cat)
one_hot
1
2
3
4
5
6
7
Dummy Variable Object
Formula: ~.
<environment: 0x00000000691091c0>
2 variables, 2 factors
Variables and levels will be separated by '.'
A less than full rank encoding is used
데이터 프레임으로 바꿔주기
1
2
data_cat2 <- data.frame(predict(one_hot, newdata = data_cat))
head(data_cat2)
gender.male | gender.female | region.Sudo | region.Chungcheung | region.Honam | region.Youngnam | region.Others |
---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
3. 연속형 특성의 Scaling
3-1. 표준화(평균 0, 표준편차 1) scaling
연속형 컬럼은 Min-Max Scaling 또는 standardization으로 변환해줌
- Min-Max Scaling ,standardization 둘다 해봐서 둘 중에 더 정확한 것을 선택해야 한다
1
2
3
library(caret)
StandardScale <- preProcess(data_num, method=c("center", "scale"))
print(StandardScale)
1
2
3
4
5
6
Created from 211 samples and 6 variables
Pre-processing:
- centered (6)
- ignored (0)
- scaled (6)
- 데이터 프레임으로 만들어주기
1
2
data_standard <- predict(StandardScale, data_num)
head(data_standard)
edu | income | age | score_gov | score_progress | score_intention |
---|---|---|---|---|---|
1.8095327 | 0.7421712 | 0.3966776 | -1.1190329 | -1.13873228 | 1.5020451 |
0.2119955 | 0.7421712 | 0.3966776 | -1.1190329 | 0.94154920 | 0.1228827 |
-1.3855418 | -0.1955421 | 1.5432389 | -2.1778487 | -0.09859154 | -0.1529498 |
0.2119955 | -1.1332554 | 0.3966776 | 2.0574147 | 0.94154920 | -0.4287823 |
-1.3855418 | -0.1955421 | 1.5432389 | 0.9985988 | -0.09859154 | -0.7046147 |
-1.3855418 | -0.1955421 | 1.5432389 | -2.1778487 | 0.94154920 | 1.2262127 |
3-2. min-max scaling
1
2
3
4
MinMaxScale <- preProcess(data_num, method=c("range"))
print(MinMaxScale)
1
2
3
4
5
Created from 211 samples and 6 variables
Pre-processing:
- ignored (0)
- re-scaling to [0, 1] (6)
1
2
data_minmax <- predict(MinMaxScale, data_num)
head(data_minmax)
edu | income | age | score_gov | score_progress | score_intention |
---|---|---|---|---|---|
1.0 | 0.6666667 | 0.6666667 | 0.25 | 0.25 | 0.75 |
0.5 | 0.6666667 | 0.6666667 | 0.25 | 0.75 | 0.50 |
0.0 | 0.3333333 | 1.0000000 | 0.00 | 0.50 | 0.45 |
0.5 | 0.0000000 | 0.6666667 | 1.00 | 0.75 | 0.40 |
0.0 | 0.3333333 | 1.0000000 | 0.75 | 0.50 | 0.35 |
0.0 | 0.3333333 | 1.0000000 | 0.00 | 0.75 | 0.70 |
4. 데이터 통합 및 저장
1
2
3
# cbind로 종 데이터를 추가해준다. cbind 외에도 여러가지 방법으로 같은 작업이 가능하다
Fvote = cbind(data_cat2, data_standard, data_class)
Fvote
gender.male | gender.female | region.Sudo | region.Chungcheung | region.Honam | region.Youngnam | region.Others | edu | income | age | score_gov | score_progress | score_intention | vote | parties |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1 | 0 | 1.8095327 | 0.7421712 | 0.3966776 | -1.11903285 | -1.13873228 | 1.5020451 | 1 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.2119955 | 0.7421712 | 0.3966776 | -1.11903285 | 0.94154920 | 0.1228827 | 0 | 3 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | -1.3855418 | -0.1955421 | 1.5432389 | -2.17784869 | -0.09859154 | -0.1529498 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | 0.3966776 | 2.05741467 | 0.94154920 | -0.4287823 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -0.1955421 | 1.5432389 | 0.99859883 | -0.09859154 | -0.7046147 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -0.1955421 | 1.5432389 | -2.17784869 | 0.94154920 | 1.2262127 | 1 | 2 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -0.1955421 | 1.5432389 | 0.99859883 | 0.94154920 | -1.2562797 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.2119955 | 1.6798845 | 1.5432389 | -0.06021701 | 0.94154920 | 0.9503802 | 1 | 3 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | -1.3855418 | -0.1955421 | 1.5432389 | -1.11903285 | -1.13873228 | -1.2562797 | 0 | 2 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -0.1955421 | 0.3966776 | 0.99859883 | -1.13873228 | 0.1228827 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -0.1955421 | 0.3966776 | -1.11903285 | 0.94154920 | -0.9804472 | 0 | 2 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | -1.3855418 | -1.1332554 | 0.3966776 | -0.06021701 | -1.13873228 | -0.4287823 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | -1.3855418 | -0.1955421 | 1.5432389 | -0.06021701 | -1.13873228 | 0.1228827 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0.2119955 | 1.6798845 | 1.5432389 | -0.06021701 | -0.09859154 | -0.7046147 | 1 | 3 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 1.8095327 | 1.6798845 | 0.3966776 | -0.06021701 | 0.94154920 | 0.9503802 | 1 | 3 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | 0.7421712 | 0.3966776 | -0.06021701 | -0.09859154 | 0.3987152 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.2119955 | 1.6798845 | 0.3966776 | 0.99859883 | -0.09859154 | 1.5020451 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -0.1955421 | 0.3966776 | 2.05741467 | 0.94154920 | -0.4287823 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | -1.3855418 | -0.1955421 | -0.7498837 | -0.06021701 | -1.13873228 | 0.1228827 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 1.8095327 | 1.6798845 | 0.3966776 | -0.06021701 | -0.09859154 | 0.1228827 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -0.7498837 | -0.06021701 | -0.09859154 | -1.2562797 | 0 | 2 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1.8095327 | -0.1955421 | -0.7498837 | -0.06021701 | 0.94154920 | -0.9804472 | 1 | 4 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0.2119955 | -0.1955421 | -0.7498837 | -0.06021701 | -0.09859154 | -2.0837772 | 1 | 4 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | 0.7421712 | 0.3966776 | -0.06021701 | 0.94154920 | -1.8079447 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0.2119955 | 0.7421712 | 0.3966776 | -0.06021701 | -1.13873228 | 0.9503802 | 1 | 2 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -0.1955421 | -0.7498837 | -0.06021701 | -1.13873228 | 0.3987152 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | 0.7421712 | -0.7498837 | -0.06021701 | 0.94154920 | -0.1529498 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | 1.6798845 | 0.3966776 | 0.99859883 | 0.94154920 | 0.1228827 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | 0.7421712 | 0.3966776 | -2.17784869 | -1.13873228 | 0.1228827 | 1 | 2 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | 1.6798845 | 1.5432389 | -0.06021701 | -0.09859154 | -0.9804472 | 1 | 3 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | -0.06021701 | 1.98168994 | -0.9804472 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | 0.99859883 | -0.09859154 | 0.6745477 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -1.8964449 | 0.99859883 | -1.13873228 | 0.6745477 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | -1.3855418 | -1.1332554 | -0.7498837 | -2.17784869 | 0.94154920 | -0.1529498 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -1.8964449 | -0.06021701 | 0.94154920 | -0.1529498 | 1 | 2 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -0.7498837 | -1.11903285 | 0.94154920 | 0.1228827 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.2119955 | -0.1955421 | 0.3966776 | 0.99859883 | -0.09859154 | 0.6745477 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -1.8964449 | -0.06021701 | -0.09859154 | -0.1529498 | 1 | 4 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -0.7498837 | -0.06021701 | -0.09859154 | 0.1228827 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | -1.3855418 | -1.1332554 | -1.8964449 | -1.11903285 | -1.13873228 | -0.4287823 | 0 | 2 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | 0.3966776 | 0.99859883 | 0.94154920 | 2.0537101 | 1 | 4 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -1.8964449 | -0.06021701 | 0.94154920 | -0.1529498 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | -1.3855418 | -1.1332554 | -0.7498837 | -0.06021701 | 0.94154920 | 0.6745477 | 1 | 4 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | -1.11903285 | -2.17887302 | -0.9804472 | 1 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | -1.3855418 | -1.1332554 | -1.8964449 | -0.06021701 | -0.09859154 | 0.1228827 | 0 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -0.1955421 | 0.3966776 | -1.11903285 | 0.94154920 | 0.1228827 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | 0.3966776 | -1.11903285 | -0.09859154 | 0.1228827 | 1 | 4 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | 0.99859883 | 0.94154920 | 2.8812076 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -0.7498837 | -0.06021701 | -1.13873228 | -0.9804472 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | 0.99859883 | -0.09859154 | 0.1228827 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | 0.99859883 | 0.94154920 | 0.9503802 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | -0.06021701 | -0.09859154 | 0.6745477 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -0.1955421 | -0.7498837 | -0.06021701 | -0.09859154 | 0.9503802 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | -1.1332554 | -1.8964449 | 2.05741467 | 0.94154920 | 0.3987152 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | -1.3855418 | 0.7421712 | 1.5432389 | -0.06021701 | -1.13873228 | -2.6354421 | 1 | 2 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | -1.3855418 | 1.6798845 | 1.5432389 | -0.06021701 | -0.09859154 | -1.5321122 | 1 | 2 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | -0.06021701 | 0.94154920 | -0.4287823 | 1 | 4 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0.2119955 | -1.1332554 | -0.7498837 | -0.06021701 | -0.09859154 | -0.4287823 | 1 | 2 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | 0.7421712 | 1.5432389 | -0.06021701 | -1.13873228 | 1.5020451 | 1 | 4 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.2119955 | -0.1955421 | -0.7498837 | -0.06021701 | -0.09859154 | 1.2262127 | 1 | 2 |
1
write.csv(Fvote, file="Fvote2.csv", row.names=TRUE)
Leave a comment